首页> 外文OA文献 >Integrated tuning fork nanocavity optomechanical transducers with high $f_{M}Q_{M}$ product and stress-engineered frequency tuning
【2h】

Integrated tuning fork nanocavity optomechanical transducers with high $f_{M}Q_{M}$ product and stress-engineered frequency tuning

机译:集成音叉纳米腔光机械传感器高   $ f_ {m} Q_ {m} $产品和压力工程频率调整

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cavity optomechanical systems are being widely developed for precision forceand displacement measurements. For nanomechanical transducers, there is usuallya trade-off between the frequency ($f_{M}$) and quality factor ($Q_{M}$), whichlimits temporal resolution and sensitivity. Here, we present a monolithiccavity optomechanical transducer supporting both high $f_{M}$ and high $Q_{M}$.By replacing the common doubly-clamped, Si$_3$N$_4$ nanobeam with a tuning forkgeometry, we demonstrate devices with the fundamental $f_{M}\approx29$ MHz and$Q_{M}\approx2.2$$\times10^5$, corresponding to an $f_{M}Q_{M}$ product of6.35$\times10^{12}$ Hz, comparable to the highest values previouslydemonstrated for room temperature operation. This high $f_{M}Q_{M}$ product ispartly achieved by engineering the stress of the tuning fork to be 3 times theresidual film stress through clamp design, which results in an increase of$f_{M}$ up to 1.5 times. Simulations reveal that the tuning fork designsimultaneously reduces the clamping, thermoelastic dissipation, and intrinsicmaterial damping contributions to mechanical loss. This work may findapplication when both high temporal and force resolution are important, such asin compact sensors for atomic force microscopy.
机译:腔光学机械系统已被广泛开发用于精确的力和位移测量。对于纳米机械换能器,通常在频率($ f_ {M} $)和品质因数($ Q_ {M} $)之间进行权衡,这限制了时间分辨率和灵敏度。在这里,我们展示了一个单腔光机电换能器,它同时支持高$ f_ {M} $和高$ Q_ {M} $。通过用调谐叉形几何结构代替常见的双钳位Si $ _3 $ N $ _4 $纳米束,我们演示了具有基本$ f_ {M} \ approx29 $ MHz和$ Q_ {M} \ approx2.2 $$ times10 ^ 5 $的设备,对应于$ f_ {M} Q_ {M} $乘积为6.35 $ \ ×10 ^ {12} $ Hz,相当于先前在室温操作中显示的最大值。这种较高的$ f_ {M} Q_ {M} $产品的部分实现方式是通过夹具设计将音叉的应力设计为剩余薄膜应力的3倍,从而使$ f_ {M} $增加了1.5倍。仿真表明,音叉设计同时减少了夹紧力,热弹性耗散和对机械损耗造成的固有材料阻尼的影响。当高时间分辨率和力分辨率都很重要时,这项工作可能会找到应用,例如在原子力显微镜的紧凑型传感器中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号